Fluids control along-strike variations in the Alaska megathrust slip

TitleFluids control along-strike variations in the Alaska megathrust slip
Publication TypeJournal Article
Year of Publication2024
AuthorsWang, F, S. Wei, S, Drooff, C, Elliott, JL, Freymueller, JT, Ruppert, NA, Zhang, H
JournalEarth and Planetary Science Letters
Date Publishedmay
KeywordsAlaska peninsula, Body-wave tomography, fluids, Megathrust earthquakes, Slip behavior, subduction zone

Interseismic and coseismic slip on the subduction zone megathrust show complex along-strike variations and the controlling factors remain debated. Here we image seismic velocity anomalies to infer fluid distribution in the Alaska subduction zone (Alaska Peninsula section) with seismic tomography. The weakly locked Shumagin segment is characterized by abundant fluids on the plate interface and in the overriding plate, whereas the moderately-to-highly locked Chignik and Chirikof segments that hosted M > 8 earthquakes are relatively dry. The Kodiak segment, which was ruptured by the 1964 M9.2 Great Alaska earthquake and is presently fully locked near the trench, is characterized by a fluid-rich plate interface but a fluid-poor and inferred low-porosity overriding plate. Multiple large earthquakes have nucleated in fluid-rich regions at the plate interface. Our study highlights the important roles of fluids, particularly in the overriding plate, in controlling interseismic slip deficit and earthquake rupture. We propose that a fluid-rich overriding plate means that there has been a high sustained flux of fluids across the plate interface, which enhances the formation of clay minerals that promote fault creep.


Scholarly Lite is a free theme, contributed to the Drupal Community by More than Themes.