Export 329 results:
Author Title [ Type(Desc)] Year
Journal Article
S. W. Bell, Ruan, Y., and Forsyth, D. W., Shear Velocity Structure of Abyssal Plain Sediments in Cascadia, Seismological Research Letters, vol. 86, pp. 1247–1252, 2015.
J. A. Collins, Wolfe, C. J., and Laske, G., Shear wave splitting at the Hawaiian hot spot from the PLUME land and ocean bottom seismometer deployments, Geochemistry, Geophysics, Geosystems, vol. 13, 2012.
N. Irabor Adimah, Tan, Y. Joe, and Russell, J. Berryman, Shear-wave velocity structure of the Blanco oceanic transform fault zone, Geophysical Journal International, vol. 239, no. 2, pp. 1287–1312, 2024.
Z. Zhang and Olugboji, T., The Signature and Elimination of Sediment Reverberations on Submarine Receiver Functions, Journal of Geophysical Research: Solid Earth, vol. 126, p. e2020JB021567, 2021.
S. S. Wei, Wiens, D. A., van Keken, P. E., and Cai, C., Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration, Science Advances, vol. 3, p. e1601755, 2017.
S. P. Hicks, Bie, L., Rychert, C. A., Harmon, N., Goes, S., Rietbrock, A., Wei, S. S., Collier, J. S., Henstock, T. J., Lynch, L., Prytulak, J., Macpherson, C. G., Schlaphorst, D., Wilkinson, J. J., Blundy, J. D., Cooper, G. F., Davy, R. G., Kendall, J. - M., and GROUP, V. O. I. L. A. W. O. R. K. I. N. G., Slab to back-arc to arc: Fluid and melt pathways through the mantle wedge beneath the Lesser Antilles, Science Advances, vol. 9, no. 5, p. eadd2143, 2023.
L. M. Wallace, Webb, S. C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., Schwartz, S. Y., and Sheehan, A. F., Slow slip near the trench at the Hikurangi subduction zone, New Zealand, Science, vol. 352, pp. 701–704, 2016.
A. Chakravorty, Small-scale factors influence mantle flow under the seafloor, Earth Magazine, vol. November, 2016.
H. Fang and Abercrombie, R. E., SMatStack to Enhance Noisy Teleseismic Seismic Phases: Validation and Application to Resolving Depths of Oceanic Transform Earthquakes, Geochemistry, Geophysics, Geosystems, vol. 24, p. e2023GC011109, 2023.
J. Neale, Harmon, N., and Srokosz, M., Source regions and reflection of infragravity waves offshore of the USA's Pacific Northwest, Journal of Geophysical Research: Oceans, vol. 120, pp. 6474–6491, 2015.
P. Bogiatzis, Karamitrou, A., J. Neale, W., Harmon, N., Rychert, C. A., and Srokosz, M., Source Regions of Infragravity Waves Recorded at the Bottom of the Equatorial Atlantic Ocean, Using OBS of the PI-LAB Experiment, Journal of Geophysical Research: Oceans, vol. 125, no. 6, p. e2019JC015430, 2020.
G. L. Christeson, Reece, R. S., Kardell, D. A., Estep, J. D., Fedotova, A., and Goff, J. A., South Atlantic Transect: Variations in Oceanic Crustal Structure at 31°S, Geochemistry Geophysics Geosystems, vol. 21, 2020.
G. A. Abers, Eilon, Z., Gaherty, J. B., Jin, G., Kim, Y. H., Obrebski, M., and Dieck, C., Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift, Journal of Geophysical Research: Solid Earth, vol. 121, pp. 951–971, 2016.
M. J. Weirathmueller, Stafford, K. M., Wilcock, W. S. D., Hilmo, R. S., Dziak, R. P., and Tréhu, A. M., Spatial and temporal trends in fin whale vocalizations recorded in the NE Pacific Ocean between 2003-2013, PLOS ONE, vol. 12, p. e0186127, 2017.
P. A. Moyer, Boettcher, M. S., McGuire, J. J., and Collins, J. A., Spatial and Temporal Variations in Earthquake Stress Drop on Gofar Transform Fault, East Pacific Rise: Implications for Fault Strength, Journal of Geophysical Research: Solid Earth, vol. 123, pp. 7722–7740, 2018.
S. Stanley, Streamlining Rapid Tsunami Forecasting, Eos, vol. 97, 2016.
J. R. Williams, Hawthorne, J. C., Rost, S., and Wright, T. J., Stress Drops on the Blanco Oceanic Transform Fault from Interstation Phase Coherence, Bulletin of the Seismological Society of America, vol. 109, pp. 929–943, 2019.
B. Boulahanis, Carbotte, S. M., Canales, J. Pablo, Han, S., and Nedimović, M. R., Structure and Evolution of Northern Juan de Fuca Crust and Uppermost Mantle Over the Last 8 Ma From an Active-Source Seismic Tomography Study, Journal of Geophysical Research: Solid Earth, vol. 127, p. e2022JB023987, 2022.
H. J. A. Van Avendonk, Holbrook, W. S., Lizarralde, D., and Denyer, P., Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica, Geochemistry, Geophysics, Geosystems, vol. 12, 2011.
H. Yao, Gouédard, P., Collins, J. A., McGuire, J. J., and van der Hilst, R. D., Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves, Nouveaux développements de l’imagerie et du suivi temporel à partir du bruit sismique, vol. 343, pp. 571–583, 2011.
H. R. Shaddox and Schwartz, S. Y., Subducted seamount diverts shallow slow slip to the forearc of the northern Hikurangi subduction zone, New Zealand, Geology, vol. 47, pp. 415–418, 2019.
M. J. Bezada, Levander, A., and Schmandt, B., Subduction in the southern Caribbean: Images from finite-frequency P wave tomography, Journal of Geophysical Research: Solid Earth, vol. 115, 2010.
Z. C. Eilon, Zhang, L., Gaherty, J. B., Forsyth, D. W., and Russell, J. B., Sub-Lithospheric Small-Scale Convection Tomographically Imaged Beneath the Pacific Plate, Geophysical Research Letters, vol. 49, p. e2022GL100351, 2022.
N. J. Accardo, Gaherty, J. B., Shillington, D. J., Ebinger, C. J., Nyblade, A. A., Mbogoni, G. J., Chindandali, P. R. N., Ferdinand, R. W., Mulibo, G. D., Kamihanda, G., Keir, D., Scholz, C., Selway, K., O'Donnell, J. P., Tepp, G., Gallacher, R., Mtelela, K., Salima, J., and Mruma, A., Surface wave imaging of the weakly extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers, Geophysical Journal International, vol. 209, pp. 1892–1905, 2017.
T. Isse, Kawakatsu, H., Yoshizawa, K., Takeo, A., Shiobara, H., Sugioka, H., Ito, A., Suetsugu, D., and Reymond, D., Surface wave tomography for the Pacific Ocean incorporating seafloor seismic observations and plate thermal evolution, Earth and Planetary Science Letters, vol. 510, pp. 116–130, 2019.

Pages

Scholarly Lite is a free theme, contributed to the Drupal Community by More than Themes.